Unsteady Formulations for Stagnation Point Flow Towards a Stretching and Shrinking Sheet with Prescribed Surface Heat Flux and Viscous Dissipation

نویسنده

  • Okey Oseloka Onyejekwe
چکیده

The unsteady stagnation point flow and heat transfer with prescribed flux towards a stretching and shrinking sheet with viscous dissipation is studied. Similarity transformation is adopted to initially convert the governing differential equations into nonlinear ordinary differential equations. The two-point boundary value ordinary differential equations (ODE) are subsequently converted into partial differential equations by introducing a time-marching scheme. A Crank-Nicolson NewtonRichtmeyer scheme is employed to discretize the resulting equations. Initial guesses are made for the dependent variables and the solution advanced in time until temporal variations of the scalar profile are diminished and the steady-state solutions satisfy the similarity equations. A variation of the heat flux at one of the boundaries produced noticeable variations in the temperature field that can be related to the magnitude of the Prandtl number and velocity ratio parameter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stagnation-point flow of a viscous fluid towards a stretching surface with variable thickness and thermal ‎radiation‎

‎In the present analysis‎, ‎we study the boundary layer flow of an incompressible viscous fluid near the two-dimensional stagnation-point flow over a stretching surface‎. ‎The effects of variable thickness and radiation are also taken into account and assumed that the sheet is non-flat‎. ‎Using suitable transformations‎, ‎the governing partial differential equations are first converted to ordin...

متن کامل

Unsteady Heat and Mass Transfer Near the Stagnation-point on a Vertical Permeable Surface: a Comprehensive Report of Dual Solutions

In this paper, the problem of unsteady mixed convection boundary layer flow of a viscous incompressible fluid near the stagnation-point on a vertical permeable plate with both cases of prescribed wall temperature and prescribed wall heat flux is investigated numerically. Here, both assisting and opposing buoyancy forces are considered and studied. The non-linear coupled partial differential equ...

متن کامل

Spectral Quasi-linearization for MHD Nanofluid Stagnation Boundary Layer Flow due to a Stretching/Shrinking Surface

This article concentrates on the effect of MHD heat mass transfer on the stagnation point nanofluid flow over a stretching or shrinking sheet with homogeneous-heterogeneous reactions. The flow analysis is disclosed in the neighborhood of stagnation point. Features of heat transport are characterized with Newtonian heating. The homogeneous-heterogeneous chemical reaction between the fluid and di...

متن کامل

Impact of thermal radiation and viscous dissipation on hydromagnetic unsteady flow over an exponentially inclined preamble stretching sheet

The present numerical attempt deals the sway to transfer of heat and mass characteristics on the time-dependent hydromagnetic boundary layer flow of a viscous fluid over an exponentially inclined preamble stretching. Furthermore, the role of viscous heating, thermal radiation, uneven energy gain or loss, velocity slip, thermal slip and solutal slips are depicted. The prevailing time-dependent P...

متن کامل

Possessions of viscous dissipation on radiative MHD heat and mass transfer flow of a micropolar fluid over a porous stretching sheet with chemical reaction

This article presents the heat and mass transfer characteristics of unsteady MHD flow of a viscous, incompressible and electrically conducting micropolar fluid in the presence of viscous dissipation and radiation over a porous stretching sheet with chemical reaction. The governing partial differential equations (PDEs) are reduced to ordinary differential equations (ODEs) by applying suitable si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017